
Indexing Techniques for Data Warehouses’ Queries

Sirirut Vanichayobon
Le Gruenwald

The University of Oklahoma
School of Computer Science

Norman, OK, 73019
sirirut@cs.ou.edu

gruenwal@cs.ou.edu

Abstract

Recently, data warehouse system is becoming more and more important for decision-makers. Most of

the queries against a large data warehouse are complex and iterative. The ability to answer these

queries efficiently is a critical issue in the data warehouse environment. If the right index structures are

built on columns, the performance of queries, especially ad hoc queries will be greatly enhanced. In this

paper, we provide an evaluation of indexing techniques being studied/used in both academic research

and industrial applications. In addition, we identify the factors that need to be considered when one

wants to build a proper index on base data.

 2

1. Introduction

A data warehouse (DW) is a large repository of information accessed through an Online Analytical

Processing (OLAP) application [CD97]. This application provides users with tools to iteratively query

the DW in order to make better and faster decisions. The information stored in a DW is clean, static,

integrated, and time varying, and is obtained through many different sources [Inm93]. Such sources

might include Online Transaction Processing (OLTP) or previous legacy operational systems over a long

period of time. Requests for information from a DW are usually complex and iterative queries of what

happened in a business such as “Finding the products’ types, units sold and total cost that were sold last

week for all stores in west region?”. Most of the queries contain a lot of join operations involving a

large number of records. Also, aggregate functions such as group-by are very common in these

queries. Such complex queries could take several hours or days to process because the queries have to

process through a large amount of data. A majority of requests for information from a data warehouse

involve dynamic ad hoc queries ([TPC98], [APB98]); users can ask any question at any time for any

reason against the base table in a data warehouse. The ability to answer these queries quickly is a

critical issue in the data warehouse environment.

There are many solutions to speed up query processing such as summary tables, indexes,

parallel machines, etc. The performance when using summary tables for predetermined queries is good.

However when an unpredicted query arises, the system must scan, fetch, and sort the actual data,

resulting in performance degradation. Whenever the base table changes, the summary tables have to be

recomputed. Also building summary tables often supports only known frequent queries, and requires

more time and more space than the original data. Because we cannot build all possible summary tables,

choosing which ones to be built is a difficult job. Moreover, summarized data hide valuable information.

For example, we cannot know the effectiveness of the promotion on Monday by querying weekly

summary. Indexing is the key to achieve this objective without adding additional hardware.

 The objectives of this paper are to identify factors that need to be considered in order to select

a proper indexing technique for data warehouse applications, and to evaluate indexing techniques being

studied/used in both academic research and industrial applications. The rest of the paper is organized as

follows. In Section 2 we discuss the important issues that we have to consider when building/selecting

 3

an indexing technique for the DW. In Section 3 we evaluate existing indexing techniques currently used

in data warehouses. In Section 4 we give conclusions and present directions for future work.

2. Indexing Issues

 Indexes are database objects associated with database tables and created to speed up access to data

within the tables. Indexing techniques have already been in existence for decades for the OLTP

relational database system but they cannot handle large volume of data and complex and iterative

queries that are common in OLAP applications. The differences between the OLAP and the OLTP

applications, shown in Table 1, determine that some new or modified techniques have to be

implemented since the existing indexing techniques are inadequate for OLAP applications.

In the following subsections we discuss the important issues that we have to consider in order to

design/select the right index structure to support DW’s queries [Col96].

OLTP OLAP
♦ Current data ♦ Current data as well as history.

♦Used to support transaction processing ♦ Used to support the business interests
♦ Clerical data processing tasks ♦ Decision support tasks
♦ Simple and known queries

♦ Ad hoc, complex, and iterative queries which access millions of
 records and perform a lot of joins and aggregates

♦ A few tables involved and unlikely to be scanned ♦ Multiple tables involved and likely to be scanned
♦ Small foundset ♦ Large foundset
♦ Short transactions ♦ Long transactions
♦ Update/Select ♦ Select (Read only)
♦ Real time update ♦ Batch update
♦ Unique index ♦ Multiple index
♦ Known access path ♦ Do not know access path until users start asking queries

♦ Detail row retrieval ♦ Aggregation and group by
♦ High selectivity queries ♦ Low selectivity queries
♦ Low I/O and processing ♦ High I/O and processing
♦ Response time does not depend on database size ♦ Response time depends on database size
♦ Data model: entity relational ♦ Data model: multidimensional

2.1 Factors used to determine which indexing technique should be built on a Column

a) Characteristics of indexed column

 A column has its own characteristics which we can use to choose a proper index. These characteristics

are given below:

Table 1: Summarizes the main differences between OLTP and OLAP systems.

 4

• Cardinality data: The cardinality data of a column is the number of distinct values in the column. It

is better to know that the cardinality of an indexed column is low or high since an indexing technique

may work efficiently only with either low cardinality or high cardinality.

• Distribution: The distribution of a column is the occurrence frequency of each distinct value of the

column. The column distribution guides us to determine which index type we should take.

• Value range: The range of values of and indexed column guides us to select an appropriate index

type. For example, if the range of a high cardinality column is small, an indexing technique based on

bitmap should be used. Without knowing this information, we might use a B-Tree resulting in a

degradation of system performance.

b) Understanding the data and the usage in the SQL language

Knowing the columns that will be queried helps us choose appropriate index types for them. For

example, which columns will likely be a part of the selection list, join constraints, application constraints,

the ORDER BY clause, or the GROUP BY clause?

2.2 Developing a new indexing technique for data warehouse’s queries.

The following are the characteristics that we have to concern with when developing a new indexing

technique:

a) The index should be small and utilize space efficiently.

b) The index should be able to operate with other indexes to filter out the records before accessing

raw data.

c) The index should support ad hoc and complex queries and speed up join operations.

d) The index should be easy to build (easily dynamically generate), implement and maintain.

3. Evaluation of Existing Indexing Techniques in Data Warehouses

In data warehouse systems, there are many indexing techniques. Each existing indexing technique is

suitable for a particular situation. In this section we describe several indexing techniques being

studied/used in both academic research and industrial applications. We will use the example in Figure 1

to explain the indexing techniques throughout the paper. The figure illustrates an example of a star

 5

schema with a central fact table called SALE and two dimension tables called PRODUCT and

CUSTOMER.

3.1 The B-Tree Index

The B-Tree Index is the default index for most relational database systems [KRRT98]. The top most

level of the index is called the root. The lowest level is called the leaf node. All other levels in between

are called branches. Both the root and branch contain entries that point to the next level in the index.

Leaf nodes consisting of the index key and pointers pointing to the physical location (i.e., row ids) in

which the corresponding records are stored. A B-Tree Index for package_type of the PRODUCT

table is shown in Figure 2.

 A B C D F G H E J K L I

 D H

Figure 2: The B-Tree Index on the package_type column of the PRODUCT table.

Figure 1: An example of the PRODUCT, CUSTOMER and SALE table.

Product_ID Customer_ID Total_Sale

 P10 C105 100
 P11 C102 100
 P15 C105 500
 P10 C107 10
 P10 C106 100
 P10 C101 900
 P11 C105 100
 P10 C109 20
 P11 C109 100
 P10 C102 400
 P13 C105 100

SALE TABLE

Customer_ID Gender City State

 C101 F Norman OK
 C102 F Norman OK
 C103 M OKC OK
 C104 M Norman OK
 C105 F Ronoake VA
 C106 F OKC OK
 C107 M Norman OK
 C108 F Dallas TX
 C109 M Norman OK
 C110 F Moore OK

CUSTOMER TABLE

Product ID Weight Size Package_Type

P10 10 10 A
P11 50 10 B
P12 50 10 A
P13 50 10 C
P14 30 10 A
P15 50 10 B
P16 50 10 D
P17 5 10 H
P18 50 10 I
P19 50 10 E
P21 40 10 I
P22 50 10 F
P23 50 10 J
P24 50 10 G
P25 10 10 F
P26 50 10 F
P27 50 10 J
P28 20 10 H
P29 50 10 G
P30 53 10 D

PRODUCT TABLE

 6

The B-Tree Index is popular in data warehouse applications for high cardinality column such as names

since the space usage of the index is independent of the column cardinality. However, the B-Tree Index

has characteristics that make them a poor choice for DW’s queries. First of all, a B-Tree index is of no

value for low cardinality data such as the gender column since it reduces very few numbers of I/Os and

may use more space than the raw indexed column. Secondly, each B-Tree Index is independent and

thus cannot operate with each other on an index level before going to the primary source. Finally, the

B-Tree Index fetches the result data ordered by the key values which have unordered row ids, so more

I/O operations and page faults are generated.

3.2 Projection Index [OQ97]

A Projection Index on an indexed column A in a table T stores all values of A in the same order as they

appear in T. Each row of the Projection Index stores one value of A. The row order of value x in the

index is the same as the row order of value x in T [OQ97]. Figure 3 shows the Projection Index on

package_type of the PRODUCT table. Normally, the queries against a data warehouse retrieve only a

few of the table’s columns; so having the Projection Index on these columns reduces tremendously the

cost of querying because a single I/O operation may bring more values into memory. Sybase builds a

Projection Index under the name of FastProjection Index on every column of a table.

3.3 Bitmap Index

The bitmap representation is an alternate method of the row ids representation. It is simple to represent,

and uses less space- and CPU-efficient than row ids when the number of distinct values of the indexed

column is low. The indexes improve complex query performance by applying low-cost Boolean

operations such as OR, AND, and NOT in the selection predicate on multiple indexes at one time to

reduce search space before going to the primary source data. Many variations of the Bitmap Index

(Pure Bitmap Index, Encoded Bitmap, etc.) have been introduced, aiming to reduce space requirement

as well as improve query performance.

a) Pure Bitmap Index [O’N87]: Pure Bitmap Index was first introduced and implemented in the

Model 204 DBMS. It consists of a collect of bitmap vectors each of which is created to represent each

distinct value of the indexed column. A bit i in a bitmap vector, representing value x, is set to 1 if the

record i in the indexed table contains x. Figure 3 shows an example of the Pure Bitmap Index on the

package_type column of the PRODUCT table. The Pure Bitmap Index on this column is the collection

 7

of 12 bitmap vectors, says {B
A
, B

B
, B

C
, B

D
, B

E
, B

F
, B

G
, B

H
, B

I
, B

J
, B

K
, and B

L
}, one for each package

type. To answer a query, the bitmap vectors of the values specified in the predicate condition are read

into memory. If there are more than one bitmap vectors read, a Boolean operation will be performed

on them before accessing data. However, the sparsity problem occurs if the Pure Index is built on high

cardinality column which then requires more space and query processing time to build and answer a

query. Most of commercial data warehouse products (e.g., Oracle, Sybase, Informix, Red Brick, etc.)

implement the Pure Bitmap Index.

 Encoded Bitmap Index [WB97]: An Encoded Bitmap Index on a column A of a table T consists of

a set of bitmap vectors, a lookup table, and a set of retrieval Boolean functions. Each distinct value of a

column A is encoded using a number of bits each of which is stored in a bitmap vector. The lookup

table stores the mapping between A and its encoded representation. IBM implements this index in DB2.

Comparing with the Pure Bitmap Index, the Encoded Bitmap Index improves the space utilization, and

solves sparsity problems. The size of the Encoded Bitmap Index built on the high cardinality column is

less than the Pure Bitmap Index. Having a well defined encoding scheme, a Boolean operation can

perform on the retrieval functions before retrieving the data, and lead to a reduction of the number of

bitmap vectors read. Its performance is degraded with equality queries since we have to search all the

bitmap vectors. The index needs to be rebuilt if we run out of bits to represent new values.

3.3 Join Index

A Join Index is built by translating restrictions on the column value of a dimension table (i.e., the gender

column) to restrictions on a large fact table. The index is implemented using one of the two

representations: row id [Vald87] or bitmap [OG95], depending on the cardinality of the indexed

column. A bitmap representation, which is called Bitmap Join Index, is used with the low cardinality

BC

0
0
0
1
:
0
0

BE

0
0
0
0
 :
0
0

BB

0
1
0
0
:
0
0

BF

0
0
0
0
 :
0
0

BA

1
0
0
0
 :
0
0

BB

0
0
0
0
:
0
1

BG

0
0
0
0
 :
1
0

BH

0
0
0
0
:
0
0

BI

0
0
0
0
:
0
0

BJ

0
0
0
0
:
0
0

BK

0
0
0
0
:
0
0

BL

0
0
1
0
:
0
0

Package_Type

A
B
L
C
:
G
D

Figure 3: An example of the Projection Index and Pure Bitmap Index
 on the package_type column of PRODUCT table.

(a) Projection
Index

(b) Pure Bitmap Index

 8

data while a row id representation is used with a high cardinality. In DW, there are many join

operations involved; so building Join Indexes on the joining columns improves query-processing time.

For example, Bitmap Join Indexes on the gender column in the SALE table can be built by using the

gender column in the CUSTOMER table and the foreign key customer id in the SALES table. Note that

the Sales table does not contain the gender column. The Bitmap Join Index for gender equal to male is

created by setting a bit corresponding to a row for customer_id whose gender is ‘M’ to 1 in the Sales

Table. Otherwise, the bit is set to 0 as shown in Figure 4.

If a bitmap vector is built by translating restrictions on the column values from several joined tables at

once (e.g. gender and product type in the different dimension tables) then it is called a Multiple Bitmap

Join Index.

3.4 Summary of Evaluation of Existing Indexing Techniques

Table 2 summarizes the key features of the evaluated indexed techniques and also include the

commercial data warehouse products that implement these techniques.

F 1 1 1 0 1 1 1 0 0 1 0

M 0 0 0 1 0 0 0 1 1 0 1

Figure 4: An example of a Bitmap Join Index on column gender in the SALE table.

(SALES table’s length)

 9

Indexing
Techniques

Characteristics

Advantages Disadvantages Implementing

Commercial
Systems

B-Tree Index

Two representations (row
id and bitmap) are
implemented at the leaves
of the index depending on
the cardinality of the data.

• It speeds up known
queries.

• It is well suited for high
cardinality.

• The space requirement
is independent of the
cardinality of the
indexed column.

• It is relatively
inexpensive when we
update the indexed
column since individual

 rows are locked.

• It performs
inefficiently with low
cardinality data

• It does not support ad
hoc queries. More I/O
operations are needed
for a wide range of
queries.

• The indexes can not be
combined before
fetching the data.

• Most of commercial
 products (Oracle,
 Informix, Red Brick)

Pure Bitmap
Index

An array of bits is utilized
to represent each unique
column value of each row
in a table, setting the bits
corresponding to the row
either ON(valued 1) or
OFF(valued 0). The
equality encoding scheme
is used.

• It is well suited for low-
cardinality columns.

• It utilizes bitwise
operations.

• The indexes can be
combined before
fetching raw data.

• It uses low space
• It works well with

parallel machine.
• It is easy to build.

• It performs efficiently
with columns involving
scalar functions (e.g.,
COUNT).

• It is easy to add new
indexed value.

• It is suitable for OLAP.

• It performs
inefficiently with high
cardinality data.

• It is very expensive
when we update index
column. The whole
bitmap segment of the
updated row is locked so
the other row can not
be updated until the
lock is released.

• It does not handle spare
data well.

• Oracle
• Informix
• Sybase
• Informix
• Red Brick
• DB2

Encoded
Bitmap Index

The index is the binary
Bit-Sliced Index built on
the attribute domain

• It uses space efficiently.
• It performs efficiently

with wide range query.

• It performs
inefficiently with
equality queries.

• It is very difficult to
find a good encoding
scheme.

• It is rebuilt every time
when a new indexed
value for which we run
out of bit to represent is
added.

• DB2

Bitmap Join
Index

The index is built by
restriction of a column on
the dimension table in the
fact table.

• It is flexible.
• It performs efficiently.
• It supports star queries.

• The order of indexed
column is important.

• Oracle
• Informix

• Red Brick

Projection Index

The index is built by
storing actual values of
column(s) of indexed
table.

• It speeds up the
performance when a
few columns in the table
are retrieved.

• It can be used only to
retrieve raw data (i.e.,
column list in
selection).

• Sybase

Table 2: Existing Indexing Technique.

 10

4. Conclusions and Future Work

The ability to extract data to answer complex, iterative, and ad hoc queries quickly is a critical issue for

data warehouse applications. A proper indexing technique is crucial to avoid I/O intensive table scans

against large data warehouse tables. The challenge is to find an appropriate index type that would

improve the queries’ performance. B-Tree Indexes should only be used for high cardinality data and

predicted queries. Bitmap Indexes play a key role in answering data warehouse’s queries because they

have an ability to perform operations on index level before retrieving base data. This speeds up query

processing tremendously. Variants of Bitmap Indexes have been introduced to reduce storage

requirement and speed up performance. Recently, most commercial data warehouse products except

Teradata database implement Bitmap Indexes. Finding a new indexing technique based on Bitmap

Indexes is still the interesting research area. To further speed up queries processing, after using Bitmap

Indexes to evaluate query predicates, Projection Indexes can be used to retrieve the columns that satisfy

the predicates. However, good index structures are useless if we do not employ an intelligent query

optimizer to select a suitable indexing technique to process queries. Data mining techniques could be

used to develop an intelligent optimizer. Paralleling is another issue that we should consider.

References

[APB98] OLAP Council, “APB-1 OLAP Benchmark Release II”, November 1998.

http://www.olapcouncil.org.
[CD97] S. Chaudhuri and U. Dayal, “An Overview of Data Warehousing and OLAP

Technology”, ACM SIGMOD RECORD, 26(1):65-74, March 1997.
[Col96] G. Colliat, OLAP, “Relational and Multimedimensional Database System”, SIGMOD

Record, 25(3):64-69, Sept. 1996
 [EN94] R. Elmasri, and S.B. Navathe, “Fundamentals of Database Systems”, 2nd Edition,

Addison-Wisley Publishing Company, 1994.

 11

[HRU96] V. Harinarayan, A. Rajaraman, and J.D. Ullman, “Implementing Data Cubes
Efficiently”, In Proc. of the ACM SIGMOD Conf. on Management of Data, Jun. 1996

[Inm93] W.H. Inmon, “Building the Data Warehouse”, John Wiley & Sons, 1993.
[KRRT98] R. Kimball, L. Reeves, M. Ross and W. Thornthwaite, “The Data Warehouse Lifecycle

Toolkit : Expert Methods for Designing, Developing, and Deploying Data
Warehouses”, John Wiley & Sons, Aug. 1998

[OG95] P. O’Neil and G. Graefe, “Multi-Table joins through Bitmapped join
indices”, SIGMOD Record, Vol. 24, No. 3, Sep. 1995

[O’N87] P. O’Neil, “Model 204 Architecture and Performance”, Springer-Verlag
Lecture Notes in Compuer Science 359, 2nd Intl. Workshop on High Performance
Transactions Systems, Asilomar, CA, Sept 1987

[OQ97] P. O’Neil and D. Quass, “Improved Query Performance with Variant
Indexes”,SIGMOD,1997

[TPC98] Transaction Processing Performance Council (TPC), “TPC Benchmark D, Decision
Support”, Standard Specification Revision 2.0.1, December 5, 1998,
http://www.tpc.org.

[WB97] MC. Wu and A. Buchmann, “Encoded Bitmap Indexing for Data
Warehouses”, DVS1, Computer Science Department,Technische University, 1997

