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Construction of an NFA from a Regular Expression 
 

Algorithm. (Thompson’s construction)  
Input.        A regular expression r over an alphabet . 
Output.    An NFA N accepting Lr. 

1. For , construct the NFA     
       start             
 

2. For a in , construct the NFA 
          start           a 
 
3. Suppose Ns and Nt are NFA’s for regular expression s and t. 

a) For the regular expression s | t, construct the following composite 
NFA Ns | t: 

 

                                                  Ns                      
              start 

                                                                              
                                                       Nt 
 

b) For the regular expression st, construct the following composite NFA 
Nst: 

 
                Start                          Ns                 Nt 
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c) For the regular expression s*, construct the following composite NFA 
Ns*: 

                                                                  
 

         start                                              Ns                           
 

                                                                  

d) For the parenthesized regular expression (s), use Ns itself as the NFA. 
 

Example  
Let us construct NFA from the regular expression (a | b)*abb 
 
 
 
 
 
 
 
 
 
 
 
 

i    f 
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Conversion of an NFA into a DFA 
 

Algorithm. Constructing a DFA from an NFA. 
Input. An NFA N. 
Output. A DFA D accepting the same language. 
Initially, -closure({s0}) is the only state in Dstates and it is unmarked; 
while there is an unmarked state T in Dstates do begin 
   mark T; 
   for each input symbol a do begin 
      U := -closure(move(T, a)); 
      if U is not in Dstates then 
         add U as an unmarked state to Dstates 
     Dtran[T, a]:=U 
   end 
end 
A state of DFA (Dstates) is a final state if it contains at least one final 
state of NFA.  
Note! move(T, a) is a set of NFA states to which there is a transition on 
input symbol a from some NFA state s in T. Dtran[T, a]:=U is a 
transition of DFA on input symbol a from state T to U. 
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Computation of -closure(T) 
push all states in T onto stack 
Initialize -closure(T) to T 
while stack is not empty do begin 
   pop t, the top element, off of stack 
   for each state u with an edge from t to u labeled  do 
      if u is not in -closure(T) do begin 
         add u  to -closure(T) 
         push u onto stack 
      end 
end 
 
Example , Figure below shows NFA accepting the language aa* | bb*. 
 
                                                                                            a 
                                                      a 

                           
start                                                                                      b 
 

                                                      b 
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Example  
Figure below shows NFA accepting the language (a|b)*abb. 
                                                                           
 
                                                                        a 

                                                                                                            
start           

                                                                                                                                   
                                                                                                                                               a 
        
                                                                           b 

                                                                                                                                                      b 
   
 
                                                                                                                                                        b 
 

The start state of the equivalent DFA is -closure(0), which is A = 
{0,1,2,4,7}, since these are exactly the states reachable from state 0 via a 
path in which every edge is labeled . Note that a path can have no 
edges, so 0 is reached from itself by such a path. 
 The input symbol alphabet here is {a, b}. The algorithm tells us to 
mark A and then to compute -closure(move(A, a)). We first compute 
move(A, a), the set of states of N having transitions on a from members 
of A. Among the states 0, 1, 2, 4 and 7, only 2 and 7 have such 
transitions, to 3 and 8, so 

1 
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3 

4 
5 

10 

6 0 7 
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-closure(move({0,1,2,4,7}, a)) = -closure({3,8}) = {1, 2, 3, 4, 6, 7, 8}. 
Let us call this set B. Thus, Dtran[A, a]=B. 
 Among the states in A, only 4 has a transition on b to 5, so the DFA 
has a transition on b from A to C = -closure({5}) = {1, 2, 4, 5, 6, 7}. 
Thus, Dtran[A, b]=C. 
 If we continue this process with the now unmarked sets B and C, 
we eventually reach the point where all sets that are states of the DFA are 
marked. This is certain since there are “only” 211 different subsets of a set 
of eleven states, and a set, once marked, is marked forever. The five 
different sets of states we actually construct are: 
A = {0, 1, 2, 4, 7}  D = {1, 2, 4, 5, 6, 7, 9} 
B = {1, 2, 3, 4, 6, 7, 8} E = {1, 2, 4, 5, 6, 7, 10} 
C = {1, 2, 4, 5, 6, 7} 
State A is the start state, and state E is the only accepting state. The 
complete transition table Dtran is shown below: 
 

 Input Symbol 

state a b 

>A 
B 
C 
D 
E* 

B 
B 
B 
B 
B 

C 
D 
C 
E 
C 
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Finite Automata with output 
 One limitation of the finite automaton as we have defined it is that 
output is limited to a binary signal: “accept” | “don’t accept”. Models in 
which the output is chosen from some other alphabet have been 
considered. There are two distinct approaches; the output may be 
associated with the state (called a Moore machine) or with the transition 
(called a Mealy machine). We notice that the two machine types produce 
the same input-output mappings. 
 

Moore machines 

A Moore machine is a six-tuple (K, , , , , s), where K, , , and 
s are as in the DFA.  is the output alphabet and  is a mapping from K 
to  giving the output associated with each state. The output of M in 
response to input a1a2 … an , n0, is (q0) (q1) … (qn) , where q0, q2, 

… , qn is the sequence of states such that (q i-1, ai) = qi for 1  i   n. 
Note that any Moore machine gives output (q0) in response to input .  
The DFA may be viewed as a special case of a Moore machine where the 
output alphabet is {0, 1} and state q is “accepting” if and only if (q) = 
1. 
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Example 
Suppose we wish to determine the residue mod 3 for each binary string 
treated as a binary integer. To begin, observe that if i written in binary is 
followed by a 0, the resulting string has value 2*i, and if i in binary is 
followed by a 1, the resulting string has value 2*i + 1. If the remainder of 
i/3 is p, then the remainder of 2*i/3 is 2*p mod 3. If p = 0, 1, or 2, then 
2*p mod 3 is 0, 2, or 1, respectively. Similarly, the remainder of (2*i + 
1)/3 is 1, 0, or 2, respectively. 
 It suffices therefore to design a Moore machine with three states, q0, 
q1, and q2, where qj is entered if and only if the input seen so far has 
residue j. We define  (qj) = j for j = 0, 1, and 2. The following figure 
shows the transition diagram, where outputs label the states.  
                                           1                                   0                 
    start 

 
     
                                 0            1                                0                             1 

Note! We use  q/a as a state indicate that (q)=a. 
On input 1010 the sequence of states entered is q0, q1, q2, q2, q1, 

giving output sequence 01221. That is ,  (which has “value” 0) has 
residue 0, 1 has residue 1, 2 (in decimal) has residue 2, 5 has residue 2, 
and 10 (in decimal) has residue 1. 
 
 

q0/0 q1/1  q2/ 2 
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Mealy machines 

A Mealy machine is a six-tuple (K, , , , , s), where all is as in the 
Moore machine, except that   maps K to . That is, (q, a) gives 
the output associated with the transition from state q on input a. The 
output of M in response to input a1a2 … an , n0, is (q0, a1) (q1, a2) … 
(qn-1, an), where q0, q2, … , qn is the sequence of states such that (q i-1, ai) 
= qi for 1  i   n. Note that this sequence has length n rather than length 
n + 1 as for Moore machine, and on input  a Mealy machine gives 
output . 
Example, 
                                                                             0/y 
                                                                                   
                                               0/n 
                          start                                                    
                                                          1/n                        0/n 

                                                  1/n                      
 

                                                                            1/y 
 

We use the label a/b on an arc from state p to state q to indicate that (p, 
a) = q and (p, a) = b. The response of M to input 01100 is nnyny, with 
the sequence of states entered being q0p0p1p1p0p0. 
 

q0 

p0 

p1 
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Theory:  If M1 is a Moore machine, then there is a Mealy machine M2 
equivalent to M1. 
 
Theory:  If M1 is a Mealy machine, then there is a Moore machine M2 
equivalent to M1. 
 
ตัวอย่าง การออกแบบเคร่ืองขายน ้าหวานอตัโนมติั สมมุติวา่เคร่ืองๆ  น้ีรับ
เฉพาะเหรียญ 1 บาท และ 5 บาทเท่านั้น และน ้าหวานท่ีขายราคาถว้ยละ 3 
บาท โดยมีน ้าหวานสองประเภท คือ น ้าเขียวและน ้าแดง เม่ือผูซ้ื้อหยอด
เหรียญมูลค่าครบ 3 บาทแลว้ สามารถเลือกกดปุ่มสีเขียวหรือสีแดงกไ็ด ้
เพื่อรับถว้ยน ้าเขียวหรือน ้าแดงตามล าดบั ในกรณีท่ีหยอดเหรียญมูลค่าเกิน 
3 บาท เคร่ืองจะทอนเงินใหด้ว้ย 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5/2 

5/4 
1/1 

5/5 

1/ 

5/3 กดปุ่มแดง/ 
น ้าแดง 
 

กดปุ่มเขียว/ 
น ้าเขียว 
 

กดปุ่มเขียว/ 

กดปุ่มแดง/ 

1/ 

กดปุ่มเขียว/ 

กดปุ่มแดง/ 

1/ 

กดปุ่มเขียว/ 

กดปุ่มแดง/ 

เร่ิมตน้ 
S0 S1 

S3 S2 
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หรือ แสดงดว้ย Transition table ได ้ดงัน้ี 
สถานะ                                            
      1       5    กดปุ่มเขียว   กดปุ่มแดง    1       5    กดปุ่มเขียว      กดปุ่มแดง 
s0           s1    s3         s0             s0            -      2         -                     - 
s1           s2    s3         s1             s1            -       3        -                     - 
s2           s3    s3         s2             s2            -       4        -                     - 
s3           s3    s3         s0             s0            1      5     น ้ าเขียว          น ้ าแดง 
 

 


