Construction of an NFA from a Regular Expression

Algorithm. (Thompson's construction)
Input. A regular expression r over an alphabet \sum.
Output. An NFA N accepting L_{r}.

1. For \mathcal{E}, construct the NFA

2. For a in \sum, construct the NFA

3. Suppose N_{s} and N_{t} are NFA's for regular expression s and t .
a) For the regular expression $\mathrm{s} \mid \mathrm{t}$, construct the following composite NFA $\mathrm{N}_{\mathrm{s} \mid \mathrm{t}}$:

b) For the regular expression st, construct the following composite NFA N_{st} :

c) For the regular expression s^{*}, construct the following composite NFA

$$
\mathrm{N}_{\mathrm{s}^{*}}:
$$

d) For the parenthesized regular expression (s), use N_{s} itself as the NFA.

Example

Let us construct NFA from the regular expression (a|b)*abb

Conversion of an NFA into a DFA

Algorithm. Constructing a DFA from an NFA.
Input. An NFA N.
Output. A DFA D accepting the same language.
Initially, ε-closure $(\{\mathrm{s} 0\})$ is the only state in Dstates and it is unmarked; while there is an unmarked state T in Dstates do begin mark T;
for each input symbol a do begin
$\mathrm{U}:=\varepsilon$-closure(move(T, a));
if U is not in Dstates then
add U as an unmarked state to Dstates
$\operatorname{Dtran}[\mathrm{T}, \mathrm{a}]:=\mathrm{U}$
end
end
A state of DFA (Dstates) is a final state if it contains at least one final state of NFA.

Note! move (T, a) is a set of NFA states to which there is a transition on input symbol a from some NFA state s in T . $\operatorname{Dtran}[\mathrm{T}, \mathrm{a}]:=\mathrm{U}$ is a transition of DFA on input symbol a from state T to U .

Computation of $\boldsymbol{\mathcal { E }}$-closure(T)

push all states in T onto stack
Initialize \mathcal{E}-closure(T) to T
while stack is not empty do begin
pop t, the top element, off of stack
for each state u with an edge from t to u labeled \mathcal{E} do
if u is not in ε-closure(T) do begin
add u to \mathcal{E}-closure(T)
push u onto stack
end
end

Example, Figure below shows NFA accepting the language aa* | bb*.

Example

Figure below shows NFA accepting the language $(\mathrm{a} \mid \mathrm{b})^{*} \mathrm{abb}$.

The start state of the equivalent DFA is $\boldsymbol{\varepsilon}$-closure (0), which is $\mathrm{A}=$ $\{0,1,2,4,7\}$, since these are exactly the states reachable from state 0 via a path in which every edge is labeled \mathcal{E}. Note that a path can have no edges, so 0 is reached from itself by such a path.

The input symbol alphabet here is $\{a, b\}$. The algorithm tells us to mark A and then to compute ε-closure(move(A, a)). We first compute move(A, a), the set of states of N having transitions on a from members of A. Among the states $0,1,2,4$ and 7 , only 2 and 7 have such transitions, to 3 and 8 , so
\mathcal{E}-closure $(\operatorname{move}(\{0,1,2,4,7\}, a))=\boldsymbol{\varepsilon}$-closure $(\{3,8\})=\{1,2,3,4,6,7,8\}$. Let us call this set B. Thus, Dtran[A, a]=B.

Among the states in A, only 4 has a transition on b to 5 , so the DFA has a transition on b from A to $\mathrm{C}=\varepsilon$-closure $(\{5\})=\{1,2,4,5,6,7\}$. Thus, $\operatorname{Dtran}[A, b]=C$.

If we continue this process with the now unmarked sets B and C , we eventually reach the point where all sets that are states of the DFA are marked. This is certain since there are "only" $2{ }^{11}$ different subsets of a set of eleven states, and a set, once marked, is marked forever. The five different sets of states we actually construct are:
$\mathrm{A}=\{0,1,2,4,7\}$
$\mathrm{D}=\{1,2,4,5,6,7,9\}$
$B=\{1,2,3,4,6,7,8\}$
$\mathrm{E}=\{1,2,4,5,6,7,10\}$
$\mathrm{C}=\{1,2,4,5,6,7\}$

State A is the start state, and state E is the only accepting state. The complete transition table Dtran is shown below:

	Input Symbol	
state	a	b
$>$ A	B	C
B	B	D
C	B	C
D	B	E
E*	B	C

Finite Automata with output

One limitation of the finite automaton as we have defined it is that output is limited to a binary signal: "accept" | "don't accept". Models in which the output is chosen from some other alphabet have been considered. There are two distinct approaches; the output may be associated with the state (called a Moore machine) or with the transition (called a Mealy machine). We notice that the two machine types produce the same input-output mappings.

Moore machines

A Moore machine is a six-tuple ($\mathrm{K}, \sum, \Gamma, \delta, \chi$, s), where K, \sum, δ, and s are as in the DFA. Γ is the output alphabet and χ is a mapping from K to Γ giving the output associated with each state. The output of M in response to input $a_{1} a_{2} \ldots a_{n}, n \geq 0$, is $\chi\left(q_{0}\right) \chi\left(q_{1}\right) \ldots \chi\left(q_{n}\right)$, where q_{0}, q_{2}, \ldots, q_{n} is the sequence of states such that $\delta\left(q_{i-1}, a_{i}\right)=q_{i}$ for $1 \leq i \leq n$. Note that any Moore machine gives output $\delta\left(\mathrm{q}_{0}\right)$ in response to input ε. The DFA may be viewed as a special case of a Moore machine where the output alphabet is $\{0,1\}$ and state q is "accepting" if and only if $\chi(\mathrm{q})=$ 1.

Example

Suppose we wish to determine the residue mod 3 for each binary string treated as a binary integer. To begin, observe that if i written in binary is followed by a 0 , the resulting string has value $2 * i$, and if i in binary is followed by a 1 , the resulting string has value $2 * i+1$. If the remainder of $i / 3$ is p, then the remainder of $2 * i / 3$ is $2 * p \bmod 3$. If $p=0,1$, or 2 , then $2 * \mathrm{p} \bmod 3$ is 0,2 , or 1 , respectively. Similarly, the remainder of $(2 * i+$ $1) / 3$ is 1,0 , or 2 , respectively.

It suffices therefore to design a Moore machine with three states, q_{0}, q_{1}, and q_{2}, where q_{j} is entered if and only if the input seen so far has residue j . We define $\chi\left(q_{j}\right)=\mathrm{j}$ for $\mathrm{j}=0$, 1 , and 2 . The following figure shows the transition diagram, where outputs label the states.

Note! We use q / a as a state indicate that $\chi(\mathrm{q})=\mathrm{a}$.
On input 1010 the sequence of states entered is $q 0$, $q 1$, $q 2$, $q 2$, $q 1$, giving output sequence 01221 . That is, \mathcal{E} (which has "value" 0) has residue 0,1 has residue 1,2 (in decimal) has residue 2,5 has residue 2 , and 10 (in decimal) has residue 1 .

Mealy machines

A Mealy machine is a six-tuple $\left(\mathrm{K}, \sum, \Gamma, \delta, \chi, \mathrm{s}\right)$, where all is as in the Moore machine, except that χ maps $\mathrm{K} \times \sum$ to Γ. That is, $\Gamma(\mathrm{q}$, a) gives the output associated with the transition from state q on input a . The output of M in response to input $a_{1} a_{2} \ldots a_{n}, n \geq 0$, is $\chi\left(q_{0}, a_{1}\right) \chi\left(q_{1}, a_{2}\right) \ldots$ $\chi\left(q_{n-1}, a_{n}\right)$, where $q_{0}, q_{2}, \ldots, q_{n}$ is the sequence of states such that $\delta\left(q_{i-1}, a_{i}\right)$ $=\mathrm{q}_{\mathrm{i}}$ for $1 \leq \mathrm{i} \leq \mathrm{n}$. Note that this sequence has length n rather than length $\mathrm{n}+1$ as for Moore machine, and on input \mathcal{E} a Mealy machine gives output \mathcal{E}.

Example,

1/y

We use the label a / b on an arc from state p to state q to indicate that $\delta(\mathrm{p}$, $a)=q$ and $\chi(p, a)=b$. The response of M to input 01100 is nnyny, with the sequence of states entered being $\mathrm{q}_{0} \mathrm{p}_{0} \mathrm{p}_{1} \mathrm{p}_{1} \mathrm{p}_{0} \mathrm{p}_{0}$.

Theory: If M_{1} is a Moore machine, then there is a Mealy machine M_{2} equivalent to M1.

Theory: If M_{1} is a Mealy machine, then there is a Moore machine M_{2} equivalent to M1.

ตัวอย่าง การออกแบบเครื่องขายน้ำหวานอัตโนมัติ สมมุติว่าเครื่องๆ นี้รับ เฉพาะเหรียญ 1 บาท และ 5 บาทเท่านั้น และน้ำหวานที่ขายราคาถ้วยละ 3 บาท โดยมีน้ำหวานสองประเภท คือ น้ำเขียวและน้ำแดง เมื่อผู้ซื้อหยอด เหรียญมูลค่าครบ 3 บาทแล้ว สามารถเลือกกดปุ่มสีเขียวหรือสีแดงก็ได้ เพื่อรับถ้วยน้ำเขียวหรือน้ำแดงตามลำดับ ในกรณีที่หยอดเหรียญมูลค่าเกิน 3 บาท เครื่องจะทอนเงินให้ด้วย

หรือ แสดงด้วย Transition table ได้ ดังนี้

สถานะ	δ				χ			
	1	5	กดปุ่มเขียว	กดปุ่มแดง	1	5	กดปุ่มเขียว	กดปุ่มแดง
s0	S1	s3	s0	s0	-	2	-	-
S1	s2	s3	S 1	S1	-	3	-	-
s2	s3	s3	s2	S2	-	4	-	-
s3	s3	s3	s0	s0	1	5	น้ำเขียว	น้ำแดง

