Construction of an NFA from a Regular Expression

Algorithm. (Thompson's construction)

- *Input.* A regular expression r over an alphabet Σ .
- *Output.* An NFA N accepting L_r.
- 1. For $\boldsymbol{\mathcal{E}}$, construct the NFA

2. For a in Σ , construct the NFA

- 3. Suppose N_s and N_t are NFA's for regular expression s and t.
 - a) For the regular expression s | t, construct the following composite

b) For the regular expression st, construct the following composite NFA

N_{st}:

c) For the regular expression s*, construct the following composite NFA

d) For the parenthesized regular expression (s), use N_s itself as the NFA.

Example

Let us construct NFA from the regular expression (a | b)*abb

Conversion of an NFA into a DFA

Algorithm. Constructing a DFA from an NFA.

Input. An NFA N.

Output. A DFA D accepting the same language.

Initially, \mathcal{E} -closure({s0}) is the only state in Dstates and it is unmarked;

while there is an unmarked state T in Dstates do begin

mark T;

for each input symbol a do begin

 $U := \mathcal{E}$ -closure(move(T, a));

if U is not in Dstates then

add U as an unmarked state to Dstates

Dtran[T, a]:=U

end

end

A state of DFA (Dstates) is a final state if it contains at least one final state of NFA.

Note! move(T, a) is a set of NFA states to which there is a transition on input symbol a from some NFA state s in T. Dtran[T, a]:=U is a transition of DFA on input symbol a from state T to U.

Computation of E-closure(T)

push all states in T onto stack

Initialize \mathcal{E} -closure(T) to T

while stack is not empty do begin

pop t, the top element, off of stack

for each state u with an edge from t to u labeled E do

if u is not in E-closure(T) do begin

add u to \mathcal{E} -closure(T)

push u onto stack

end

end

Example, Figure below shows NFA accepting the language aa* | bb*.

Example

Figure below shows NFA accepting the language (a|b)*abb.

The start state of the equivalent DFA is \mathcal{E} -closure(0), which is A = {0,1,2,4,7}, since these are exactly the states reachable from state 0 via a path in which every edge is labeled \mathcal{E} . Note that a path can have no edges, so 0 is reached from itself by such a path.

The input symbol alphabet here is $\{a, b\}$. The algorithm tells us to mark A and then to compute \mathcal{E} -closure(move(A, a)). We first compute move(A, a), the set of states of N having transitions on a from members of A. Among the states 0, 1, 2, 4 and 7, only 2 and 7 have such transitions, to 3 and 8, so E-closure(move({0,1,2,4,7}, a)) = E-closure({3,8}) = {1, 2, 3, 4, 6, 7, 8}. Let us call this set B. Thus, Dtran[A, a]=B.

Among the states in A, only 4 has a transition on b to 5, so the DFA has a transition on b from A to $C = \mathcal{E}$ -closure({5}) = {1, 2, 4, 5, 6, 7}. Thus, Dtran[A, b]=C.

If we continue this process with the now unmarked sets B and C, we eventually reach the point where all sets that are states of the DFA are marked. This is certain since there are "only" 2^{11} different subsets of a set of eleven states, and a set, once marked, is marked forever. The five different sets of states we actually construct are:

 $A = \{0, 1, 2, 4, 7\} \qquad D = \{1, 2, 4, 5, 6, 7, 9\}$ $B = \{1, 2, 3, 4, 6, 7, 8\} \qquad E = \{1, 2, 4, 5, 6, 7, 10\}$ $C = \{1, 2, 4, 5, 6, 7\}$

State A is the start state, and state E is the only accepting state. The complete transition table Dtran is shown below:

	Input Symbol				
state	а	b			
>A	В	С			
В	В	D			
С	В	С			
D	В	E			
E*	В	С			

Finite Automata with output

One limitation of the finite automaton as we have defined it is that output is limited to a binary signal: "accept" | "don't accept". Models in which the output is chosen from some other alphabet have been considered. There are two distinct approaches; the output may be associated with the state (called a Moore machine) or with the transition (called a Mealy machine). We notice that the two machine types produce the same input-output mappings.

Moore machines

A Moore machine is a six-tuple (K, \sum , Γ , δ , χ , s), where K, \sum , δ , and s are as in the DFA. Γ is the output alphabet and χ is a mapping from K to Γ giving the output associated with each state. The output of M in response to input $a_1a_2 \dots a_n$, $n \ge 0$, is $\chi(q_0) \chi(q_1) \dots \chi(q_n)$, where $q_0, q_2,$ \dots, q_n is the sequence of states such that $\delta(q_{i-1}, a_i) = q_i$ for $1 \le i \le n$. Note that any Moore machine gives output $\delta(q_0)$ in response to input \mathcal{E} . The DFA may be viewed as a special case of a Moore machine where the output alphabet is $\{0, 1\}$ and state q is "accepting" if and only if $\chi(q) =$ 1.

Example

Suppose we wish to determine the residue mod 3 for each binary string treated as a binary integer. To begin, observe that if i written in binary is followed by a 0, the resulting string has value 2*i, and if i in binary is followed by a 1, the resulting string has value 2*i + 1. If the remainder of i/3 is p, then the remainder of 2*i/3 is $2*p \mod 3$. If p = 0, 1, or 2, then $2*p \mod 3$ is 0, 2, or 1, respectively. Similarly, the remainder of (2*i + 1)/3 is 1, 0, or 2, respectively.

It suffices therefore to design a Moore machine with three states, q_0 , q_1 , and q_2 , where q_j is entered if and only if the input seen so far has residue j. We define $\chi(q_j) = j$ for j = 0, 1, and 2. The following figure shows the transition diagram, where outputs label the states.

Note! We use q/a as a state indicate that $\chi(q)=a$.

On input 1010 the sequence of states entered is q0, q1, q2, q2, q1, giving output sequence 01221. That is , \mathcal{E} (which has "value" 0) has residue 0, 1 has residue 1, 2 (in decimal) has residue 2, 5 has residue 2, and 10 (in decimal) has residue 1.

Mealy machines

A Mealy machine is a six-tuple (K, \sum , Γ , δ , χ , s), where all is as in the Moore machine, except that χ maps K× \sum to Γ . That is, $\Gamma(q, a)$ gives the output associated with the transition from state q on input a. The output of M in response to input $a_1a_2 \dots a_n$, $n \ge 0$, is $\chi(q_0, a_1) \chi(q_1, a_2) \dots \chi(q_{n-1}, a_n)$, where q_0, q_{2,\dots, q_n} is the sequence of states such that $\delta(q_{i-1}, a_i) = q_i$ for $1 \le i \le n$. Note that this sequence has length n rather than length n + 1 as for Moore machine, and on input ε a Mealy machine gives output ε .

Example,

We use the label a/b on an arc from state p to state q to indicate that $\delta(p, a) = q$ and $\chi(p, a) = b$. The response of M to input 01100 is nnyny, with the sequence of states entered being $q_0 p_0 p_1 p_1 p_0 p_0$.

Theory: If M_1 is a Moore machine, then there is a Mealy machine M_2 equivalent to M1.

Theory: If M_1 is a Mealy machine, then there is a Moore machine M_2 equivalent to M1.

ตัวอย่าง การออกแบบเครื่องขายน้ำหวานอัตโนมัติ สมมุติว่าเครื่องๆ นี้รับ เฉพาะเหรียญ 1 บาท และ 5 บาทเท่านั้น และน้ำหวานที่ขายราคาถ้วยละ 3 บาท โดยมีน้ำหวานสองประเภท คือ น้ำเขียวและน้ำแดง เมื่อผู้ซื้อหยอด เหรียญมูลค่าครบ 3 บาทแล้ว สามารถเลือกกดปุ่มสีเขียวหรือสีแดงก็ได้ เพื่อรับถ้วยน้ำเขียวหรือน้ำแดงตามลำดับ ในกรณีที่หยอดเหรียญมูลค่าเกิน 3 บาท เครื่องจะทอนเงินให้ด้วย

สถานะ	δ			χ				
	1	5	กดปุ่มเขียว	กดปุ่มแดง	1	5	กดปุ่มเขียว	กดปุ่มแดง
s0	s 1	s3	s0	s0	-	2	-	-
s1	s2	s3	s1	s 1	-	3	-	-
s2	s3	s3	s2	s2	-	4	-	-
s3	s3	s3	s0	s0	1	5	น้ำเขียว	น้ำแดง

หรือ แสดงด้วย Transition table ได้ ดังนี้