
 14

Construction of an NFA from a Regular Expression

Algorithm. (Thompson’s construction)
Input. A regular expression r over an alphabet .
Output. An NFA N accepting Lr.

1. For , construct the NFA
 start 

2. For a in , construct the NFA
 start a

3. Suppose Ns and Nt are NFA’s for regular expression s and t.

a) For the regular expression s | t, construct the following composite
NFA Ns | t:

  Ns 
 start

  
 Nt

b) For the regular expression st, construct the following composite NFA
Nst:

 Start Ns Nt

 f

i

i

 f

i f

i f

 15

c) For the regular expression s*, construct the following composite NFA
Ns*:

 

 start  Ns 

 

d) For the parenthesized regular expression (s), use Ns itself as the NFA.

Example
Let us construct NFA from the regular expression (a | b)*abb

i f

 16

Conversion of an NFA into a DFA

Algorithm. Constructing a DFA from an NFA.
Input. An NFA N.
Output. A DFA D accepting the same language.
Initially, -closure({s0}) is the only state in Dstates and it is unmarked;
while there is an unmarked state T in Dstates do begin
 mark T;
 for each input symbol a do begin
 U := -closure(move(T, a));
 if U is not in Dstates then
 add U as an unmarked state to Dstates
 Dtran[T, a]:=U
 end
end
A state of DFA (Dstates) is a final state if it contains at least one final
state of NFA.
Note! move(T, a) is a set of NFA states to which there is a transition on
input symbol a from some NFA state s in T. Dtran[T, a]:=U is a
transition of DFA on input symbol a from state T to U.

 17

Computation of -closure(T)
push all states in T onto stack
Initialize -closure(T) to T
while stack is not empty do begin
 pop t, the top element, off of stack
 for each state u with an edge from t to u labeled  do
 if u is not in -closure(T) do begin
 add u to -closure(T)
 push u onto stack
 end
end

Example , Figure below shows NFA accepting the language aa* | bb*.

 a
 a

 
start b

  b

1

0

3

2

4

 18

 19

Example
Figure below shows NFA accepting the language (a|b)*abb.
 

 a

  
start 

 
   a

 b

  b

 b

The start state of the equivalent DFA is -closure(0), which is A =
{0,1,2,4,7}, since these are exactly the states reachable from state 0 via a
path in which every edge is labeled . Note that a path can have no
edges, so 0 is reached from itself by such a path.
 The input symbol alphabet here is {a, b}. The algorithm tells us to
mark A and then to compute -closure(move(A, a)). We first compute
move(A, a), the set of states of N having transitions on a from members
of A. Among the states 0, 1, 2, 4 and 7, only 2 and 7 have such
transitions, to 3 and 8, so

1

2
3

4
5

10

6 0 7

8

9

 20

-closure(move({0,1,2,4,7}, a)) = -closure({3,8}) = {1, 2, 3, 4, 6, 7, 8}.
Let us call this set B. Thus, Dtran[A, a]=B.
 Among the states in A, only 4 has a transition on b to 5, so the DFA
has a transition on b from A to C = -closure({5}) = {1, 2, 4, 5, 6, 7}.
Thus, Dtran[A, b]=C.
 If we continue this process with the now unmarked sets B and C,
we eventually reach the point where all sets that are states of the DFA are
marked. This is certain since there are “only” 211 different subsets of a set
of eleven states, and a set, once marked, is marked forever. The five
different sets of states we actually construct are:
A = {0, 1, 2, 4, 7} D = {1, 2, 4, 5, 6, 7, 9}
B = {1, 2, 3, 4, 6, 7, 8} E = {1, 2, 4, 5, 6, 7, 10}
C = {1, 2, 4, 5, 6, 7}
State A is the start state, and state E is the only accepting state. The
complete transition table Dtran is shown below:

 Input Symbol

state a b

>A
B
C
D
E*

B
B
B
B
B

C
D
C
E
C

 21

Finite Automata with output
 One limitation of the finite automaton as we have defined it is that
output is limited to a binary signal: “accept” | “don’t accept”. Models in
which the output is chosen from some other alphabet have been
considered. There are two distinct approaches; the output may be
associated with the state (called a Moore machine) or with the transition
(called a Mealy machine). We notice that the two machine types produce
the same input-output mappings.

Moore machines

A Moore machine is a six-tuple (K, , , , , s), where K, , , and
s are as in the DFA.  is the output alphabet and  is a mapping from K
to  giving the output associated with each state. The output of M in
response to input a1a2 … an , n0, is (q0) (q1) … (qn) , where q0, q2,

… , qn is the sequence of states such that (q i-1, ai) = qi for 1  i  n.
Note that any Moore machine gives output (q0) in response to input .
The DFA may be viewed as a special case of a Moore machine where the
output alphabet is {0, 1} and state q is “accepting” if and only if (q) =
1.

 22

Example
Suppose we wish to determine the residue mod 3 for each binary string
treated as a binary integer. To begin, observe that if i written in binary is
followed by a 0, the resulting string has value 2*i, and if i in binary is
followed by a 1, the resulting string has value 2*i + 1. If the remainder of
i/3 is p, then the remainder of 2*i/3 is 2*p mod 3. If p = 0, 1, or 2, then
2*p mod 3 is 0, 2, or 1, respectively. Similarly, the remainder of (2*i +
1)/3 is 1, 0, or 2, respectively.
 It suffices therefore to design a Moore machine with three states, q0,
q1, and q2, where qj is entered if and only if the input seen so far has
residue j. We define  (qj) = j for j = 0, 1, and 2. The following figure
shows the transition diagram, where outputs label the states.
 1 0
 start

 0 1 0 1

Note! We use q/a as a state indicate that (q)=a.
On input 1010 the sequence of states entered is q0, q1, q2, q2, q1,

giving output sequence 01221. That is ,  (which has “value” 0) has
residue 0, 1 has residue 1, 2 (in decimal) has residue 2, 5 has residue 2,
and 10 (in decimal) has residue 1.

q0/0 q1/1 q2/ 2

 23

Mealy machines

A Mealy machine is a six-tuple (K, , , , , s), where all is as in the
Moore machine, except that  maps K to . That is, (q, a) gives
the output associated with the transition from state q on input a. The
output of M in response to input a1a2 … an , n0, is (q0, a1) (q1, a2) …
(qn-1, an), where q0, q2, … , qn is the sequence of states such that (q i-1, ai)
= qi for 1  i  n. Note that this sequence has length n rather than length
n + 1 as for Moore machine, and on input  a Mealy machine gives
output .
Example,
 0/y

 0/n
 start
 1/n 0/n

 1/n

 1/y

We use the label a/b on an arc from state p to state q to indicate that (p,
a) = q and (p, a) = b. The response of M to input 01100 is nnyny, with
the sequence of states entered being q0p0p1p1p0p0.

q0

p0

p1

 24

Theory: If M1 is a Moore machine, then there is a Mealy machine M2
equivalent to M1.

Theory: If M1 is a Mealy machine, then there is a Moore machine M2
equivalent to M1.

ตัวอย่าง การออกแบบเคร่ืองขายน ้าหวานอตัโนมติั สมมุติวา่เคร่ืองๆ น้ีรับ
เฉพาะเหรียญ 1 บาท และ 5 บาทเท่านั้น และน ้าหวานท่ีขายราคาถว้ยละ 3
บาท โดยมีน ้าหวานสองประเภท คือ น ้าเขียวและน ้าแดง เม่ือผูซ้ื้อหยอด
เหรียญมูลค่าครบ 3 บาทแลว้ สามารถเลือกกดปุ่มสีเขียวหรือสีแดงกไ็ด ้
เพื่อรับถว้ยน ้าเขียวหรือน ้าแดงตามล าดบั ในกรณีท่ีหยอดเหรียญมูลค่าเกิน
3 บาท เคร่ืองจะทอนเงินใหด้ว้ย

5/2

5/4
1/1

5/5

1/

5/3 กดปุ่มแดง/
น ้าแดง

กดปุ่มเขียว/
น ้าเขียว

กดปุ่มเขียว/

กดปุ่มแดง/

1/

กดปุ่มเขียว/

กดปุ่มแดง/

1/

กดปุ่มเขียว/

กดปุ่มแดง/

เร่ิมตน้
S0 S1

S3 S2

 25

หรือ แสดงดว้ย Transition table ได ้ดงัน้ี
สถานะ  
 1 5 กดปุ่มเขียว กดปุ่มแดง 1 5 กดปุ่มเขียว กดปุ่มแดง
s0 s1 s3 s0 s0 - 2 - -
s1 s2 s3 s1 s1 - 3 - -
s2 s3 s3 s2 s2 - 4 - -
s3 s3 s3 s0 s0 1 5 น ้ าเขียว น ้ าแดง

