ARITHMETIC AND LOGIC
OPERATIONS

FUNDAMENTALS AND APPLICATIONS

* Arithmetic operations in images perform on a
pixel-by-pixel basis.

* Givena 2D array, X, and Y,
e 7 obtains by calculating:
/=X0OY

* Where O is a binary arithmetic (+, -, %, /)
operator.

Addition Operator

* To blend the pixel contents from two images

Addition Operator

* Orto add a constant value to pixel values of
an image.

Noise Addition Operator

* Adding random amounts to each pixel value is
a common way to simulate additive noise.

Addition Operator

* Adding two images must be careful with
overflow values.

* Two ways to deal with the overflow issue:

— normalization

g= I (Lz — Zmin)
e Zmax T Zmin
— truncation.

Addition Operator

Example:
200 100 1007 100 220 2307
X=|0 10 50 y— |45 95 120
50 250 120 205 100 0O

W = UInt16(X) + Uint16(Y) 300 320 3307
= uin + Uin .

/ K
Za = 255%(W-45)/(350-45); W = | 4> 105 170
Zb = X +Y; %imadd(X,Y); 255 350 120

213 230 238 2305 255 2357
Z,= 1|0 50 105 Zy = | 40 105 170
175 255 63 200 255 120

Subtraction Operator

e Used to detect differences between two
Images.

* Such differences may be due to several factors

— Such as artificial addition to or removal of relevant
contents from the image (e.g., using an image
manipulation program)

— relative object motion between two frames of a
video sequence, and many others.

Subtraction Operator

e Subtracting a constant value from an image
causes a decrease in its overall brightness, a
process sometimes referred to as subtractive
image offset.

Subtraction Operator

Image subtraction can also be used to obtain the

negative of an image.
Z =Ly, —X

255

Subtraction Operator

e Subtracting one image from another or a

constant from an image, you must be careful with
underflow.

* There are two ways of dealing with this underflow
Issue:

— absolute difference (which will always result in
positive values proportional to the difference between
the two original images without indicating, however,
which pixel was brighter or darker) and

— truncating the result, so that negative intermediate
values become zero.

Subtraction Operator

Example:
200 100 1007
X=|0 10 50
50 250 120

Za = X-Y; % imsubtract(X, Y)
Zb =Y-X; % imsubtract(X,Y)
Zc = | X-Y|; %imabsdiff(X,Y)

0 120 1307
Zo— |45 85 170

(100 220 230]
45 95 120
200 100 O
100 0 0

0 0 0
0 150 120
100 120 130
45 85 70
155 130 120

Multiplication and Division Operators

Multiplication and division by a scalar are often
used to perform brightness adjustments on an
Image.

Multiplicative image scaling—makes each pixel
value brighter (or darker) by multiplying its
original value by a scalar factor:

— if the value of the scalar multiplication factor is
greater than one, the result is a brighter image;

— if it is greater than zero and less than one, it results in
a darker image.

Multiplicative image scaling usually produces
better subjective results than the additive image
offset process described previously.

Multiplication and Division Operators

Combining Arithmetic Operations

* To combine several arithmetic operations applied to
one or more images may compound the problems of
overflow and underflow discussed previously.

* To achieve more accurate results without having to
explicitly handle truncations and round-offs, the IPT
offers a built-in function to perform a linear
combination of two or more images: imlincomb.

* imlincomb computes each element of the output
individually, in double-precision floating point.

* |f the output is an integer array, imlincomb truncates
elements that exceed the range of the integer type and
rounds off fractional values.

Combining Arithmetic Operations

Example:
200 100 1007 100 220 2307 200 160 1307
X=|0 10 50|y— |45 95 120|z— [145 195 120
|50 250 120 205 100 0O 105 240 150

Sa=(X+(Y+2))/3; %imdivide(imadd(X,imadd(Y,Z)),3)
a = uint16(X) + uint16(Y)

b =a+ uintl6(Z)

Sb = uint8(b/3)

Sc =imlincomb(1/3,X,1/3,Y,1/3,Z,/uint8’)

85 85 85] 167 160 153] 167 160 153
s — |63 85 85| s,=|63 100 97 |s = |63 100 97
85 85 85 120 197 90 120 197 90

LOGIC OPERATIONS

* They are performed in a bit-wise for each pixel
value.

* NOT operator requires only one argument.

/

<

y

I/x

NOT X NOT Y

-

LOGIC OPERATIONS

 AND, XOR, and OR operators require two or
more operands.

X ANDY XORY X XORY (NOT X) ANDY

LOGIC OPERATIONS with Grayscale

Z = bitor(X,Y) Z = bitcmp(X,Y)

