
ARITHMETIC AND LOGIC
OPERATIONS

FUNDAMENTALS AND APPLICATIONS

• Arithmetic operations in images perform on a
pixel-by-pixel basis.

• Given a 2D array, X, and Y,

• Z obtains by calculating:

Z = X  Y

• Where  is a binary arithmetic (+, −, ×, /)
operator.

Addition Operator

• To blend the pixel contents from two images

X + Y = Z

Addition Operator

• Or to add a constant value to pixel values of
an image.

X + 50 = Z

• Adding random amounts to each pixel value is
a common way to simulate additive noise.

Noise Addition Operator

X + noise(0,0.01) = Z

• Adding two images must be careful with
overflow values.

• Two ways to deal with the overflow issue:

– normalization

𝑔 = 𝐿𝑚𝑎𝑥
𝑍 − 𝑍𝑚𝑖𝑛

𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛

– truncation.

Addition Operator

Example:

Addition Operator

W = uint16(X) + uint16(Y);
Za = 255*(W-45)/(350-45);
Zb = X + Y; %imadd(X,Y);

Subtraction Operator
• Used to detect differences between two

images.

• Such differences may be due to several factors

– Such as artificial addition to or removal of relevant
contents from the image (e.g., using an image
manipulation program)

– relative object motion between two frames of a
video sequence, and many others.

• Subtracting a constant value from an image
causes a decrease in its overall brightness, a
process sometimes referred to as subtractive
image offset.

Subtraction Operator

X - 50 = Z

Image subtraction can also be used to obtain the
negative of an image.

𝑍 = 𝐿𝑚𝑎𝑥 − 𝑋

Subtraction Operator

-X + 255 = Z

• Subtracting one image from another or a
constant from an image, you must be careful with
underflow.

• There are two ways of dealing with this underflow
issue:
– absolute difference (which will always result in

positive values proportional to the difference between
the two original images without indicating, however,
which pixel was brighter or darker) and

– truncating the result, so that negative intermediate
values become zero.

Subtraction Operator

Example:

Subtraction Operator

Za = X-Y; % imsubtract(X, Y)
Zb = Y-X; % imsubtract(X,Y)
Zc = |X-Y|; %imabsdiff(X,Y)

Multiplication and Division Operators
• Multiplication and division by a scalar are often

used to perform brightness adjustments on an
image.

• Multiplicative image scaling—makes each pixel
value brighter (or darker) by multiplying its
original value by a scalar factor:
– if the value of the scalar multiplication factor is

greater than one, the result is a brighter image;
– if it is greater than zero and less than one, it results in

a darker image.

• Multiplicative image scaling usually produces
better subjective results than the additive image
offset process described previously.

Multiplication and Division Operators

X X*0.5 X/0.5

Combining Arithmetic Operations
• To combine several arithmetic operations applied to

one or more images may compound the problems of
overflow and underflow discussed previously.

• To achieve more accurate results without having to
explicitly handle truncations and round-offs, the IPT
offers a built-in function to perform a linear
combination of two or more images: imlincomb.

• imlincomb computes each element of the output
individually, in double-precision floating point.

• If the output is an integer array, imlincomb truncates
elements that exceed the range of the integer type and
rounds off fractional values.

Example:

Combining Arithmetic Operations

Sa = (X + (Y + Z))/3; % imdivide(imadd(X,imadd(Y,Z)),3)
a = uint16(X) + uint16(Y)
b = a + uint16(Z)
Sb = uint8(b/3)
Sc = imlincomb(1/3,X,1/3,Y,1/3,Z,’uint8’)

LOGIC OPERATIONS
• They are performed in a bit-wise for each pixel

value.

• NOT operator requires only one argument.

LOGIC OPERATIONS
• AND, XOR, and OR operators require two or

more operands.

LOGIC OPERATIONS with Grayscale

X Y Z = bitand(X,Y)

Z = bitor(X,Y) Z = bitxor(X,Y)
Z = bitcmp(X,Y)

